VALIDATED COST PREDICTION FOR ADDITIVE MANUFACTURING – COMBINATION OF A MODEL BASED APPROACH WITH AN EMPIRICAL STUDY

Matthias Schneck, Matthias Schmitt, Georg Schlick, Gunther Reinhart

DDMC Conference, 23.06.2020

Introduction Fraunhofer IGCV Spotlight on research activities in Additive Manufacturing

Process development and multi-material processing

Exemplary Case study by Fraunhofer IGCV, SLM Solutions, ABB: "Multi-material Part (CCZ, 1.2709) for High Volume Injection Moulding Components" shown at Formnext 2017, Frankfurt

study by Fraunhofer tions, ABB: art (CCZ, 1.2709) for

of metal parts

Indirect Additive Manufacturing

Binder jetted sand mould (left), target metal part (right)

Implementation and training

Design and Engineering for Additive

Award-winning design "Functionally Integrated Shaft and Gear", Additive World Congress 2018 in Eindhoven

Implementation model (left) and logo of partner for quality-focussed training (right)

Motivation Implementation of Additive Manufacturing in Industry

"How can our products and processes benefit from Additive Manufacturing technologies?"

> Knowledge of cost structure is one of the main hindrances for the utilization of AM as production technology.¹

1.) Lindemann 2017

State of Research Cost modelling approaches and cost structure of powder bed processes

 \rightarrow Cost modelling approaches calculate the cost on an analytical basis using process parameters.

1.) Baumers & Tuck 2019 2.) Ruffo et al. 2006

Research Approach Validated cost indicator for Additive Manufacturing (LPBF¹)

 \rightarrow Three independent sources are compared to obtain the validated cost indicator for 1.4404 (316L).

1.) Laser-based powder bed fusion

Validated cost indicator for Additive Manufacturing (LPBF) 1st Source: Cost model and sensitivity analysis

→ Cost for 1.4404 calculated with the ACM are 0.55 T \in /kg.

→ Most important cost influences are build rate, machine productive time, depreciation time and machine invest.

Validated cost indicator for Additive Manufacturing (LPBF) 2nd Source: Literature review on external supply cost (buy option)

- \rightarrow Mass-based cost decrease with raising order volume.
- → External supply cost of AM parts (buy scenario) is negligible addressed in literature.¹

Validated cost indicator for Additive Manufacturing (LPBF) 3rd Source: Benchmark study of supplier cost

→ External supply cost range between 3.94 T€/kg and 0.58 T€/kg. → Cost spread by a factor of 6.8.

 \rightarrow Cost of external supply decrease for high order volumes.

© Fraunhofer IGCV

Validated cost indicator for Additive Manufacturing (LPBF) Result: Comparison of the information sources

- → Significant spread of cost: From 0.55 T€/kg up to 19 T€/kg.
- → Analytically obtained costs (based on ACM) meet the market prices for high order volumes.
- → Economic evaluation of AM parts should always include a benchmark of supplier quotes.

Outlook on certified training programs in Additive Manufacturing Fraunhofer "Metal Additive Manufacturing Professional"

→ Learn at 5 Fraunhofer Institutes offering a comprehensive background in Metalbased Additive Manufacturing!

Thank you very much for watching! Questions or remarks? → Leave a comment or get in touch!

M. Sc. Matthias Schneck Research Associate Additive Manufacturing

Fraunhofer IGCV

Am Technologiezentrum 10 86159 Augsburg Phone +49 821 90678-140 matthias.schneck@igcv.fraunhofer.de

www.igcv.fraunhofer.de

www.amlab.de

